68 research outputs found

    Trends and Challenges in CMOS Design for Emerging 60 GHz WPAN Applications

    Get PDF
    International audienceThe extensive growth of wireless communications industry is creating a big market opportunity. Wireless operators are currently searching for new solutions which would be implemented into the existing wireless communication networks to provide the broader bandwidth, the better quality and new value-added services. In the last decade, most commercial efforts were focused on the 1-10 GHz spectrum for voice and data applications for mobile phones and portable computers (Niknejad & Hashemi, 2008). Nowadays, the interest is growing in applications that use high rate wireless communications. Multigigabit- per-second communication requires a very large bandwidth. The Ultra-Wide Band (UWB) technology was basically used for this issue. However, this technology has some shortcomings including problems with interference and a limited data rate. Furthermore, the 3-5 GHz spectrum is relatively crowded with many interferers appearing in the WiFi bands (Niknejad & Hashemi, 2008). The use of millimeter wave frequency band is considered the most promising technology for broadband wireless. In 2001, the Federal Communications Commission (FCC) released a set of rules governing the use of spectrum between 57 and 66 GHz (Baldwin, 2007). Hence, a large bandwidth coupled with high allowable transmit power equals high possible data rates. Traditionally the implementation of 60 GHz radio technology required expensive technologies based on III-V compound semiconductors such as InP and GaAs (Smulders et al., 2007). The rapid progress of CMOS technology has enabled its application in millimeter wave applications. Currently, the transistors became small enough, consequently fast enough. As a result, the CMOS technology has become one of the most attractive choices in implementing 60 GHz radio due to its low cost and high level of integration (Doan et al., 2005). Despite the advantages of CMOS technology, the design of 60 GHz CMOS transceiver exhibits several challenges and difficulties that the designers must overcome. This chapter aims to explore the potential of the 60 GHz band in the use for emergent generation multi-gigabit wireless applications. The chapter presents a quick overview of the state-of-the-art of 60 GHz radio technology and its potentials to provide for high data rate and short range wireless communications. The chapter is organized as follows. Section 2 presents an overview about 60 GHz band. The advantages are presented to highlight the performance characteristics of this band. The opportunities of the physical layer of the IEEE 802.15.3c standard for emerging WPAN applications are discussed in section 3. The tremendous opportunities available with CMOS technology in the design of 60 GHz radio is discussed in section 4. Section 5 shows an example of 60 GHz radio system link. Some challenges and trade-offs on the design issues of circuits and systems for 60 GHz band are reported in section 6. Finally, section 7 presents the conclusion and some perspectives on future directions

    Energy Performance of LDPC Scheme in Multi-Hop Wireless Sensor Network with Two base Stations Model

    Get PDF
    Conservation of the energy is one of the main design issues in wireless sensor networks. The limited battery power of each sensor node is a challenging task in deploying this type of network. The challenge is crucial in reliable wireless network when implementing efficient error correcting scheme with energy consuming routing protocol. In this work, we investigated the energy performance of LDPC code in multi-hop wireless sensor network. We proposed a model of two base stations to prolong the lifetime and build a reliable and energy-efficient network. Through performed MATLAB simulations, we examine the energy effectiveness of multiple base stations model on reliable wireless sensor network performance in different network dimensions

    A Secret Image Sharing Based on Logistic-Chebyshev Chaotic Map and Chinese Remainder Theorem

    Get PDF
    Visual secret sharing (VSS) was introduced in order to solve information security issues. It is a modern cryptographic technique. It involves breaking up a secret image into nn secured components known as shares. The secret image is recovered with utmost secrecy when all of these shares are lined up and piled together. A (3, 3)-secret image sharing scheme (SIS) is provided in this paper by fusing the Chinese Remainder Theorem (CRT) and the Logistic-Chebyshev map (LC). Sharing a confidential image created with CRT has various benefits, including lossless recovery, the lack of further encryption, and minimal recovery calculation overhead. Firstly, we build a chaotic sequence using an LC map. The secret value pixel for the secret image is permuted in order to fend off differential attackers. To encrypt the scrambled image, we apply our CRT technique to create three shares. Finally, the security analysis of our (3, 3)-SIS scheme is demonstrated and confirmed by some simulation results

    An energy-efficient clustering protocol using fuzzy logic and network segmentation for heterogeneous WSN

    Get PDF
    Wireless sensor networks have become an emerging research area due to their importance in the present industrial application. The enlargement of network lifetime is the major limitation in WSN. Several routing protocols study the extension of lifespan in WSN. Routing protocols significantly influence on the global of energy consumption for sensors in WSN. It is essential to correct the energy efficiency performance of routing protocol in order to improve the lifetime. The protocols based on clustering are the most routing protocols in WSN to reduce energy consumption. The protocols dedicate to WSN have demonstrated their limitation in expanding the lifetime of the network. In this paper, we present Hybrid SEP protocol : Multi-zonal Fuzzy logic heterogeneous Clustering based on Stable Election Protocol (FMZ-SEP). The FMZ-SEP characterizes by four parameters: WSN segmentation (splitting the WSN into the triangle zones ), the Subtractive Clustering Method to determine a correct number of clusters, the FCM and the SEP protocol. The FMZ-SEP prolong the stability period and extend the lifetime. The simulation results point out that the stability period of FMZ-SEP. FMZ-SEP protocol outperforms of MZ-SEP, FSEP and SEP protocol by improving the network lifetime and the stability period

    Smart industrial IoT monitoring and control system based on UAV and cloud computing applied to a concrete plant

    Get PDF
    Unmanned aerial vehicles (UAVs) are now considered one of the best remote sensing techniques for gathering data over large areas. They are now being used in the industry sector as sensing tools for proactively solving or preventing many issues, besides quantifying production and helping to make decisions. UAVs are a highly consistent technological platform for efficient and cost-effective data collection and event monitoring. The industrial Internet of things (IIoT) sends data from systems that monitor and control the physical world to data processing systems that cloud computing has shown to be important tools for meeting processing requirements. In fog computing, the IoT gateway links different objects to the internet. It can operate as a joint interface for different networks and support different communication protocols. A great deal of effort has been put into developing UAVs and multi-UAV systems. This paper introduces a smart IIoT monitoring and control system based on an unmanned aerial vehicle that uses cloud computing services and exploits fog computing as the bridge between IIoT layers. Its novelty lies in the fact that the UAV is automatically integrated into an industrial control system through an IoT gateway platform, while UAV photos are systematically and instantly computed and analyzed in the cloud. Visual supervision of the plant by drones and cloud services is integrated in real-time into the control loop of the industrial control system. As a proof of concept, the platform was used in a case study in an industrial concrete plant. The results obtained clearly illustrate the feasibility of the proposed platform in providing a reliable and efficient system for UAV remote control to improve product quality and reduce waste. For this, we studied the communication latency between the different IIoT layers in different IoT gateways.The authors would like to thank the Seneca Foundation as also FRUMECAR S.L., for their support and the opportunity to implement and test the proposed approach on their facilities. This work was partially supported by FRUMECAR S.L. and Seneca Foundation's "Murcia Regional Scientific Excellence Research Program" (Murcia Science and Technology Agency-19895/GERM/15)

    On the performance of adaptive coding schemes for energy efficient and reliable clustered wireless sensor networks

    Get PDF
    Clustering is the key for energy constrained wireless sensor networks (WSNs). Energy optimization and communication reliability are the most important consideration in designing efficient clustered WSN. In lossy environment, channel coding is mandatory to ensure reliable and efficient communication. This reliability is compromised by additional energy of coding and decoding in cluster heads. In this paper, we investigated the trade-offbetween reliability and energy efficiency and proposed adaptive FEC/FWD and FEC/ARQ coding frameworks for clustered WSNs. The proposed schemes consider channel condition and inter-node distance to decide the adequate channel coding usage. Simulation results show that both the proposed frameworks are energy efficient compared to ARQ schemes and FEC schemes, and suitable to prolong the clustered network lifespan as well as improve the reliability

    Analyse comportementale des filtres à capacités commutées pour les radiocommunications : Conception d'une nouvelle architecture en technologie BiCMOS 0,35 μm

    No full text
    The main objective of the present research work is both to study the feasibility of radio-frequency monolithic switched capacitor filters for radio-communications, and to proceed to the analysis and design of these filters in the standard BiCMOS 0.35 μm technology. The behavioral analysis of these filters required the establishment of an original algorithm based on the conversion matrixes formalism, which in general principle consists of linearizing the non-linear elements around the operating points. This analysis method, especially used for the phase noise study of oscillator, seems to be among the most rigorous and efficient in term of calculation time for the analysis of this kind of filters in the present day. Traditionally, at low-frequencies the command of these filters is performed by using a shift register. However, this technique is not feasible in RF domain. An original solution has been proposed which consists in the use of a ring voltage controlled oscillator with " XOR " gates to command the filter. In the present thesis, it has been shown that the association of such command circuit with these filters presents some advantages which make it more attractive for designers. For the application in radiocommunication specifications, the classical structure of the switched capacitor filter has been optimized to reduce the noise figure and to increase the dynamic range, thus a new architecture (LC switched capacitor filter) has been proposed. The whole circuit has been simulated in the case of digital transmission (ex. p/4-DQPSK), the results have shown the adaptability for such kind of transmission. Moreover, the command circuit phase noise has been taken in account to study the jitter impact on the filter behavior. To validate the simulation results, a prototype consisted of an LC switched capacitor filter and its command circuit has been fabricated in standard BiCMOS 0.35 μm technology, the chip area is 1.1 x 1.75 mm². This first prototype has allowed to prove the feasibility of this architecture in the RF domain. The experimental results are in good agreement with simulations and are susceptible to render this original architecture attractive for RF applications.Le travail de recherche présenté dans ce mémoire s'inscrit dans l'objectif général d'étudier la faisabilité de filtres monolithiques radiofréquences (RF) à capacités commutées pour la radiocommunication mobile, et de pouvoir procéder à l'analyse et à la conception de ces filtres en technologie standard BiCMOS 0,35 μm. L'analyse comportementale de ces filtres a nécessité la mise au point d'un algorithme original basé sur le formalisme des matrices de conversion, dont le principe général consiste à effectuer une linéarisation des éléments non-linéaires autour du point de fonctionnement grand signal. Cette méthode d'analyse, spécialement utilisée pour l'analyse du bruit de phase des oscillateurs, semble à ce jour parmi les plus rigoureuses et les plus efficaces en terme de temps de calcul pour l'analyse de ce type de filtres. Traditionnellement, à basse fréquence la commande de ces filtres est réalisée à l'aide d'un registre à décalage. Cependant, cette technique n'est pas envisageable en RF. Une solution originale qui consiste à commander le filtre à partir d'un oscillateur en anneau contrôlé en tension et de portes logiques " ou exclusif " a été proposée. Grâce à cette solution, il a été montré que l'association d'un tel circuit de commande appliqué à ce type de filtre présente des avantages importants et par conséquent devrait le rendre beaucoup plus attractif pour les concepteurs. Pour répondre aux spécifications de la radiocommunication mobile, la structure classique du filtre a été optimisée pour réduire le facteur du bruit et augmenter la dynamique, ainsi une nouvelle architecture (filtre LC à capacités commutées) a été proposée. Des simulations ont été réalisées sur l'ensemble du circuit afin de prévoir les dégradations éventuelles qui peuvent être générées par ces circuits lors d'une transmission numérique (ex. p/4-DQPSK) et d'étudier ainsi l'impact du bruit de phase (gigue temporelle) généré par le circuit de commande sur le comportement du filtre. Parallèlement, un prototype composé d'un filtre LC à capacités commutées et de son circuit de commande a été fabriqué en technologie standard BiCMOS 0,35 mm, sur une puce de taille de 1,1 x 1,75 mm². Ce premier circuit a permis de prouver la faisabilité de cette architecture dans le domaine des RF. Les résultats expérimentaux confirment les simulations et sont susceptibles de rendre cette architecture originale attractive pour des applications radiofréquences
    • …
    corecore